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Automated design of protecting molecules for metal nanoparticles
by combinatorial molecular simulations
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Abstract

New tripod oligo(dibenzyl sulfide) molecules were designed by computer modeling calculations so that they would form 1:1 complexes
with an Au147 nanoparticle. Twelve aromatic molecules containing two methylthiomethyl groups were used as construction units (‘‘res-
idues’’). Combinations of the residues (‘‘sequences’’) were examined by molecular dynamic simulations, and those sequences giving the
largest interaction energies with the gold nanoparticle were sought through either full search or genetic algorithm. Best-fit sequences were
found for N = 5 and 6 (N is the number of ‘‘residues’’ in one leg of the tripod molecule).
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Recently metal nanoparticles have gained much interest
[1] as useful materials in the fields of nanoscale electronics
[2], photonics [3], as well as catalytic chemistry [4]. One
particularly interesting area is the combination of metal
nanoparticles with organic molecules that will lead to a
new type of ‘‘organometallic’’ materials. The pioneering
work of Brust et al. [5] opened the field of monolayer pro-
tected clusters (MPC) [6]. These materials exhibit excellent
stability and have found numerous applications in various
fields [7]. However, from a ‘‘molecular’’ point of view, these
materials are complex mixtures of metal nanoparticles and
indeterminate numbers of protecting molecules, and we
often need to handle them as an ensemble of materials with
a certain distribution of size and composition.

Such complexity may be resolved when we can make
one-to-one composites of metal nanoparticles and protect-
ing molecules. However, it is not easy to design protecting
molecules that just ‘‘fit’’ the metal nanoparticles. The diffi-
0022-328X/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.jorganchem.2006.05.058

* Tel.: +81 564 59 5531; fax: +81 564 59 5510.
E-mail address: toshi-n@ims.ac.jp.
culty lies in the fact that we need to cover a spherical sur-
face with a set of molecular fragments. This cannot be
easily done by intuitive design.

Herein we propose an automated designing protocol of
protecting molecules based on the concept of combinatorial
computational chemistry [8]. The basic architecture of the
target molecules is the same as in our previous study [9]; they
are tripod molecules with an oligo(dibenzyl sulfide) frame-
work (Fig. 1a). Between the sulfide linkage aromatic groups
are placed, which are selected from those shown in Fig. 1b.
We call these aromatic groups ‘‘residues’’, and the kinds
and orders of the residues within one particular leg
‘‘sequences’’, by analogy with the peptide chemistry. Our
aim is to find the best-fit sequences by calculations.

2. Computational methods

2.1. General

The atom types and force field parameters were taken
from the parm99 force field distributed with AMBER 7 (all-
atom version) [10]. Nonbonding interaction between the
organic molecules and the gold nanoparticle was imple-
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Fig. 1. (a) The base structure of the target molecule. (b) The ‘‘residues’’
used in this study.
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mented as in our previous report [9]. The molecular
dynamic (MD) calculations were performed mainly with
a homemade program package named LWMD, although
the NAMD program package [11] was also used (mainly
for checking purposes). A timestep of 1 fs was used, with
no constraints for hydrogen atoms. The temperature was
maintained at 300 K by rescaling the velocities every 200
steps. Solvents were not included. We previously claimed
that we needed to include the solvent to predict the solution
structure of this type of molecules correctly [9]. However,
in the present study we need to reduce the computational
demand as much as possible, because we want to calculate
a large number of combinations. The problem of simula-
tions in a vacuum is the collapsing of the molecules by
intramolecular van der Waals (vdW) interactions [12], but
we can avoid this by cutting off the vdW terms at short dis-
tances. So we made the cutoff distances between the
organic atoms at the equilibrium distance (i.e. the sum of
vdW radii) for each pair of atoms. This is a crude approx-
imation, but sufficient for screening purposes. Visualization
of the structures were done with VMD [13]. Calculations
were performed on a Silicon Graphics SGI2800 computer
and a local cluster of Apple PowerMac G5 machines.

2.2. Preparation of residues

We defined each residue by appending two methylthiom-
ethyl (CH3SCH2–) groups at appropriate positions of the
aromatic molecule. A preliminary structure was built by
use of the Chem3D program package (CambridgeSoft).
The equilibrium structure and the RESP (restrained electro-
static potential fit) atomic charges [14] were obtained by
quantum chemical calculation (HF/6-31G*) with GAMESS

[15], followed by treatment with the RESP module of AMBER.
The atomic coordinates and the RESP charges of the
residues are given in Supporting information.

2.3. Automatic building of initial structures

We built a sequence from the component residues as
shown in Fig. 2; namely, one methyl group and one meth-
ylthio (CH3S–) group were formally removed to make an
interresidue bond.

An obvious problem here is how to determine the rela-
tive geometry of the interconnecting two residues. One
method is to fix the bond lengths and angles, and rotate
the single bonds until all atom collisions are relieved. This
is a useful technique in generating, for example, peptide
structures. However, it is not suitable for the present appli-
cation, because it tends to give random, unpredictable
structures, whereas we want to restrict the initial structures
so that we can quickly find the possible best-fit candidates.
Although we might ultimately need to do a complete search
over all structural space starting from random structures, it
is too resource-demanding to be useful at the screening
stage.

Instead, we placed the residues with our preferential ori-
entations, and with sufficient interresidue distances to
avoid any atom collisions. This naturally resulted in extre-
mely long ‘‘bonds’’ between the residues, as illustrated in
Fig. 2 with the bold lines. These ‘‘abnormal’’ bonds were
relieved by short runs of molecular dynamic simulations
with special treatments of the abnormal bonds as follows:
(1) Find all the bonds with lengths no shorter than 2req

(req is the equilibrium bond length defined by the force field
parameters), and label them as ‘‘abnormal’’ bonds. (2) The
bond-stretching energy for the ‘‘abnormal’’ bonds is
defined as �k(r � Ran)2, instead of the ordinary form
�k(r � req)2, where Ran is an ‘‘abnormal bond length’’
defined for that particular bond. Initially Ran is set to the
initial bond length of the abnormal bond. (3) Ran is
reduced by DR = 0.01 Å after every MD step. (4) When
Ran becomes equal or less than req, the bond is no longer
abnormal, and the atoms are allowed to move under the
ordinary bond-stretching potential energy.

Fig. 3 demonstrates how this technique worked. In the
initial structure, the benzene ring in the center of the tripod
was placed on the plane at z = 10 Å, with the center of the
benzene ring on the z-axis. The cuboctahedron Au147 clus-
ter [16] was then placed at (0,0,0) with one of the 3-fold
axis coincide with the z-axis. This caused the central ben-
zene ring to be nearly in van der Waals contact with one
of the triangular sides of Au147. The residues in the three
legs were placed as follows; the nth residue in the mth
leg (n = 1, . . . ,N; m = 1, ,2,3) was located at (r0n1/2 cosh,



Fig. 2. Automatic construction of the target structure from a sequence ‘‘ABC’’. The bold lines denote the ‘‘abnormal’’ bonds.
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r0n1/2 sinh, r0(1 � n/2)) where h = (np/9 � 2mp/3) and r0 =
15 Å. As shown in the ‘‘top view’’ of Fig. 3, the residues in
one leg were placed along a spiral parallel to the z-axis, and
the three legs were placed in a C3-symmetric orientation.
During the first 5000 steps, the abnormal bonds were
annealed according to the protocol described above. In
addition, the following restrictions were applied: (1) the
atoms in the Au147 cluster and the central benzene ring
were fixed at their initial positions by a harmonic potential
with k = 24 kcal/mol/Å2, (2) a central potential U(r) was
applied so that the organic atoms were made to approach
the cluster surface; U(r) = 0 (r < 12), 0.5 (r � 12)2

(12 6 r < 15), 1.5 (2r � 3) (r P 15), r in Å and U in kcal/
mol/Å2, (3) velocities of all atoms were reinitialized by ran-
dom values every 50 steps, in order to avoid accumulation
Fig. 3. Selected snapshots of a MD run starting from the automatically
generated structure for the sequence ‘‘ABC’’. The gold atoms and organic
atoms are shown in white and gray, respectively.
of momenta caused by these artificial potentials. After 5000
steps, these artificial potentials were removed and all atoms
were allowed to move under ordinary potentials (including
our Au–X potentials) at 300 K. As shown in Fig. 3, the
molecule smoothly wrapped the Au147 cluster during the
first 5000 steps, and then started moving on the nanoparti-
cle surface. This protocol is thus useful in finding the stable
conformations quickly without human intervention.

2.4. Search for candidate sequences

We carried out the search for candidate sequences in
two stages. In the first (preliminary) stage, a wide range
of sequences were calculated for small number of MD steps
(5000 steps with restriction and 15,000–20,000 steps with-
out restriction), and only those sequences with lowest ener-
gies were selected for the next stage. For N = 3 and 4, a full
search with all possible combinations was carried out. For
N = 5 and 6, a search by use of a genetic algorithm [17] (see
below) was carried out. In all cases, top 400 sequences were
selected for the second (final) stage, where more extensive
search for the lowest energy conformations was carried
out.

2.5. Application of genetic algorithm

We carried out preliminary search for N = 5 and 6 by
use of a genetic algorithm as follows: (1) M sequences of
length N were randomly prepared. Each sequence is associ-
ated with the interaction energy, which was calculated as
the lowest value of the sum of Au–X vdW energies in the
last MD run. (2) Two ‘‘parent’’ sequences were selected
from the M sequences. The probability for a particular
sequence i to be selected is proportional to exp(�Ei/W),
where Ei is the associated interaction energy of the
sequence i and W is a constant. We set W = 20 kcal/mol,
which was determined by trial-and-error experimental cal-
culations. (3) Two ‘‘child’’ sequences were generated from
the ‘‘parent’’ sequences by a crossing (with 75% probabil-



Table 2
The residue statistics of the top-100 sequences for N = 3

Rank R1 R2 R3 Total

1 K 38 K 22 K 32 K 91
2 L 26 L 18 L 19 L 66
3 H 10 C 14 H 12 H 30
4 I 10 B 12 D 11 C 29
5 C 6 I 10 I 9 I 28
6 D 4 D 9 C 9 D 24
7 B 4 H 9 B 4 B 20
8 J 2 J 3 J 2 J 7
9 A 1 A 1 F 2

10 F 1 F 1 A 2
11 G 1 G 1

Table 3
The top-10 sequences for N = 4

Rank Sequence Energy (kcal/mol)

1 KKDL �355.94
2 CKKK �351.28
3 KLDK �350.29
4 CCLL �347.48
5 CJKL �345.86
6 KLKH �345.18
7 HLKJ �343.80
8 LBBK �342.82
9 KHKC �342.68

10 CKLL �341.61
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ity) at one random point followed by mutations of all res-
idues with 30% probability. (4) Repeat (2)–(3) until M dif-
ferent sequences were generated, and perform calculations
of these sequences. (5) Select M sequences of lowest inter-
action energies from the 2M sequences of the current and
last generations. (6) Repeat (2)–(5) for K times. We used
M = 200 and K = 50 for N = 5, and M = 600 and K = 50
for N = 6.

3. Results

3.1. N = 3 and 4

Table 1 lists the top-10 sequences for N = 3, and Table 2
lists the statistics of the residues at each position in the
sequence. We should note that the ranking of specific
sequence may vary because of the fluctuation of the ener-
gies due to the random nature of MD simulations. How-
ever, we can observe the general trends. The most
notable point is that the residues K and L tend to give high
scores, whereas the residues A, E, F, and G seldom appear
in the high-rank sequences. The top-100 sequences had
only two A’s, no E, two F’s and one G. Particularly, the
AAA sequence which we used in the previous study [9]
(except for the terminal methylthio groups instead of the
tetrahydropyranyloxy groups) did not give a good score;
in the preliminary stage its rank was 1314 out of
123 = 1728 sequences.

Table 3 lists the top-10 sequences for N = 4, and Table 4
lists the residue statistics. In this case, we omitted residues
Table 1
The top-10 sequences for N = 3

Rank Sequence Energy (kcal/mol)

1 LKK �305.86
2 KHK �292.64
3 KLK �289.37
4 KKL �286.17
5 LBL �283.69
6 IKK �283.14
7 HHK �282.81
8 KBK �282.67
9 KLH �282.64

10 KIK �282.37

(>400) AAA �210.10

Table 4
The residue statistics of the top-100 sequences for N = 4

Rank R1 R2 R

1 K 48 L 26 K
2 L 25 K 26 L
3 D 11 C 13 C
4 H 7 I 11 H
5 B 5 B 9 I
6 I 3 H 6 D
7 C 1 D 6 B
8 J 3 J
A, E, F, and G and used only 8 residues. The total number
of sequences was thus 84 = 4096. The general trend is very
similar to that for N = 3. The interaction energy is ca.
50 kcal/mol larger than the N = 3 series [18], suggesting
more effective protection of the nanoparticle.

Fig. 4 shows the ‘‘best-fit’’ structures for N = 3 (LKK)
and N = 4 (KKDL). Both structures have a substantial
portion of the nanoparticle surface left unprotected,
although the unprotected portion is reduced in the N = 4
complex compared with the N = 3 complex.

3.2. N = 5 and 6

As described in Section 2, we used genetic algorithm in
the preliminary search for N = 5 and 6. To see whether this
algorithm worked as expected, we again included the resi-
dues A, E, F, and G and saw how they behaved during
3 R4 Total

33 L 26 K 144
20 K 22 L 94
13 D 16 C 35
11 C 12 H 32
9 J 9 D 32
9 B 9 I 28
3 H 3 B 26
2 I 3 J 9



Fig. 4. The lowest energy structures for (a) N = 3 and (b) N = 4. (c)
Description of ‘‘top’’, ‘‘front’’, and ‘‘side’’ views. The dark gray ellipse is
the central benzene ring of the protecting molecule.

Fig. 5. Population of residues in each generation in genetic calculations
for N = 5.

Fig. 6. Distribution of interaction energies in each generation in genetic
calculations for N = 5.
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the ‘‘genetic’’ process for N = 5. In each generation, occur-
rence of each residue was counted over the 200 sequences.
The results are shown in Fig. 5. The residues E, F, and G
quickly got out within 15 generations while the residues
K and L prevailed. The residue A remained, but at substan-
tially low level. After 30 generations change of the popula-
tion of each residue became gradual, suggesting that the
system was approaching the stationary state. Fig. 6 shows
the interaction energies (minimum, maximum, and aver-
age) in each generation, which also indicates that the ener-
gies were approaching the stationary values after 30
generations. These results suggest that the present protocol
was useful for quick selection of good candidates.

The top-10 sequences for N = 5 and 6 are shown in
Tables 5 and 7, and the residue statistics are listed in Tables
6 and 8. The ‘‘best-fit’’ structures are shown in Fig. 7. The
surface of the nanoparticle is almost completely covered by
the these sequences. Interestingly, the large residues (H, I)
are moderately prevalent for N = 3 (Table 2), but they
become minor for N = 5 and 6 and give way to smaller res-
idues like B, C, D, and J (Tables 6 and 8). Another interest-
ing point is that, although K and L (with sulfide side
chains) are prevalent in all cases, the best-fit sequence
shown for N = 6 contained no K and only one L. Careful
examination of the structure of HDBBDL revealed pres-
ence of three spirals which fill the spherical surface without
aid of the side chains (Fig. 8). These structures are the
results of competition among residues for the nanoparticle
surface area. Our combinatorial calculation automatically
took care of the balance of the surface area and the differ-
ent sizes and shapes of the residues.

3.3. The sequences with a single residue

It is also interesting to examine the results with the
sequences with only one residue, like all-A, all-B, etc. Table
9 shows the rank numbers of such sequences for each N.
The rank numbers generally show the similar trend with
the preference of residues from the residue statistics (Tables
2, 4, 6, and 8), but they did not correspond each other in all



Table 5
The top-10 sequences for N = 5

Rank Sequence Energy (kcal/mol)

1 LKLLC �410.19
2 KBKDJ �403.11
3 KKLLC �402.62
4 KKLCK �399.88
5 LKLLB �399.38
6 JKDKC �399.20
7 KCKKL �398.93
8 KKDKB �397.40
9 LKKLC �397.29

10 KCCKK �394.46

Table 6
The residue statistics of the top-100 sequences for N = 5

Rank R1 R2 R3 R4 R5 Total

1 K 61 K 44 K 59 K 54 C 22 K 234
2 L 18 L 18 L 17 L 19 B 17 L 85
3 B 5 B 12 J 6 B 10 K 16 B 47
4 J 5 C 11 C 5 D 5 D 14 C 43
5 H 4 D 6 D 4 J 4 L 13 D 32
6 D 3 J 5 B 3 C 3 J 10 J 30
7 C 2 H 3 I 2 H 3 I 4 H 15
8 A 1 I 1 H 2 A 1 H 3 I 9
9 I 1 A 1 I 1 A 1 A 4

10 F 1 F 1

Table 7
The top-10 sequences for N = 6

Rank Sequence Energy (kcal/mol)

1 HDBBDL �430.51
2 LJLCKB �427.68
3 JDKKKH �426.99
4 CLDCDK �422.26
5 LKDKDC �421.74
6 LJLCLL �421.55
7 LCKBLL �421.54
8 DCDDBK �419.55
9 ILDLLK �418.43

10 LDJLBJ �417.97

Table 8
The residue statistics of the top-100 sequences for N = 6

Rank R1 R2 R3 R4 R5 R6 Total

1 L 53 C 27 D 26 L 24 K 24 B 22 L 154
2 J 12 L 21 L 17 K 23 D 23 L 18 D 102
3 K 9 D 14 B 17 J 17 L 21 K 18 K 100
4 D 8 B 14 K 17 D 15 B 17 D 16 B 89
5 B 8 J 13 C 14 B 11 C 6 C 8 C 66
6 C 5 K 9 J 8 C 5 J 5 J 8 J 63
7 H 4 A 1 H 1 A 3 I 3 I 4 H 10
8 I 1 I 1 H 2 A 1 H 3 I 9
9 A 2 A 7

Fig. 7. The lowest energy structures for (a) N = 5 and (b) N = 6.

Fig. 8. Alternative views of the lowest energy structure for N = 6. The
atoms in the three legs are drawn in white, gray, and black. The Au147

nanoparticle is shown in wireframe.
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Fig. 9. The lowest energy structures for (a) CCCCCC, (b) LLLLLL, and
(c) KKKKKK.
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cases. Particularly marked deviation was observed for
N = 6, where the residue L was top in the residue statistics
(Table 8) but at the third in Table 9, and the residue C was
top in Table 9 but at the fifth in Table 8. Fig. 9 shows the
lowest energy structures of the sequences CCCCCC,
LLLLLL, and KKKKKK. The structure of CCCCCC is
very similar to the ‘‘best’’ sequence HDBBDL (Fig. 8),
while the structure of LLLLLL and KKKKKK are more
random and some parts of the molecules are sticking out
from the nanoparticle surface.

4. Discussion

The problem we are trying to solve is similar to the
‘‘pentomino’’ puzzle [19], where one is supposed to cover
a certain area of a checker board with a set of pieces of var-
ious shapes. However, the present problem is much more
difficult because the area to cover is not planar but spher-
ical, and because the covalent bonds between the ‘‘pieces’’
introduce additional restrictions to the mutual positions
and orientations of the neighboring pieces. Moreover, the
‘‘pieces’’ themselves may not be strictly rigid, which can
be another source of complication. Molecular simulations
can take all these aspects into account, so that they are
the methods of choice for this sort of problem.

From the practical point of view, it is useful to know
which ‘‘residues’’ are better than other ones. Such informa-
tion will help us to screen out the ‘‘not-so-good’’ residues
and to reduce the number of combinations to try by real
synthesis. The residue statistics (Tables 2, 4, 6, and 8) give
us such information. The results of the sequences with a
single residue (Table 9) also provides a similar information.
The residues that generally gave high rank were K and L.
This can be attributed to two reasons. One is the presence
of extra sulfur atoms that have stronger interaction than
carbon atoms. Another is the moderate flexibility of the
alkylthio ‘‘side chains’’, which is effective for covering the
Table 9
The sequences with one residue and their ranka

N = 3b N = 4b

LLL 44 KKKK 25
KKK 171 LLLL 155
DDD 208 HHHH 207
HHH 283 DDDD 279
III 289 CCCC 363
CCC (>400) JJJJ 380
BBB (>400) BBBB (>400)
JJJ (>400) IIII (>400)
AAA (>400) AAAA (>400)
FFF (>400) FFFF (>400)
GGG (>400) GGGG (>400)
EEE (>400) EEEE (>400)

a The rank numbers larger than 400 are undefined, because only 400 sequen
b For N = 3 and 4, some of these sequences were not calculated in the final sta

the rank for those sequences, they were calculated in the same manner as in the
c For N = 5 and 6, not all the possible sequences were included in the gene

described in footnote b.
d The ‘KKKKK’ sequence does not appear in Table 5, because the genetic c
neighboring area around the main chain. The residue J
was less effective, because the methylthio group is too small
for this purpose. On the other hand, residues A, E, F, and
G did not give good scores. The residues E, F, and G are
derivatives of biphenyl, which do not match well to the sur-
N = 5c N = 6c

KKKKKd 4 CCCCCC 29
LLLLL 74 KKKKKK 58
DDDDD 118 LLLLLL 126
JJJJJ 281 BBBBBB 277
HHHHH 376 JJJJJJ 287
BBBBB 397 DDDDDD 293
CCCCC 399 HHHHHH 390
AAAAA (>400) AAAAAA 391
IIIII (>400) IIIIII (>400)
FFFFF (>400) GGGGGG (>400)
EEEEE (>400) FFFFFF (>400)
GGGGG (>400) EEEEEE (>400)

ces were calculated at the final stage.
ge because their rank in the preliminary stage was low. In order to estimate
final stage, and the rank numbers were obtained from the merged results.

tic calculations. The rank numbers of these sequences were estimated as

alculation did not hit this particular sequence.



Fig. 10. The surface covering schemes for (a) HDBBDL and (b)
LKDKDC. The spherical surface is divided into three areas with
approximate 3-fold axis (shown in white, gray and black), and each area
is covered with one leg of the tripod molecule. The figures with chemical
formula illustrates how each area is covered with the leg.
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face of the nanoparticle. The low scores of A is probably
due to the small size of the aromatic ring and lack of sulfur
atoms in the side chain.

The situation is somewhat special for N = 6. We have
argued that the residues K and L are good because of their
alkylthio side chains, however if the sequences consist of
only K or only L, the side chains cannot be accommodated
very well because of conflicts between the side chains. The
surface coverage is approaching full for N = 6, so that the
requirement of the shapes of the residues becomes strict
(you may recall the pentomino puzzle; when the coverage
is low you have many choices, but as the free space
decreases the choice becomes narrow quickly). Under such
circumstances, it is more important to select proper combi-
nations (or sequences) of residues, rather than to pick a sin-
gle ‘‘good’’ residue and to use it repeatedly. Apparently,
the combinatorial computation is the method of choice
for finding such sequences.

In general, it is not straightforward to explain why a
particular sequence is better than others, because the inter-
action energies depend on various factors. However, in
some cases the molecular shape alone can account for the
efficient coverage. Fig. 10a shows how the tripod molecule
with sequence HDBBDL (the ‘‘best’’ sequence in Table 7)
covers the nanoparticle surface. As shown in Fig. 8, the
lowest-energy structure has approximately 3-fold symme-
try. Each leg covers 1/3 of the spherical surface in a helical
manner. The 1/3 part of the sphere has a characteristic
shape, with steep curves at both ends and a flat area in
between. The residues H and L fit the curvy ends, and
the sequence DBBD fits the flat area. The arrangement of
these residues match their shapes very well. Another clear
example is the sequence LKDKDC (Fig. 10b; rank 5 in
Table 7). The lowest-energy structure for this sequence also
had approximate 3-fold symmetry, but the area occupied
by each leg was not helical but straight, i.e. the areas are
roughly separated by the longitude lines. In this case, each
leg should make a turn to cover the area, because the area
is too wide and too short to accommodate one leg in its
stretched form. The sequence DKD provides such a turn.
Admittedly, these symmetric structures were rather excep-
tional, and most other sequences gave more random struc-
tures. Nevertheless, it is insightful that, at least in some
cases, very reasonable structures can be formed from
apparently featureless sequences.

5. Conclusion

We propose here a computational method for designing
protecting molecules for metal nanoparticles. Although the
computations include a number of crude approximations,
the results are predictive and useful. In combination with
synthetic works, the present method will provide new
insights about soft nanomaterials consisting of nanoparti-
cles and organic molecules.
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